Quality Management in Engineering Education ...for employability and sustainable competitive advantage ### **Business Environment** **Fast-Changing** **Globalized** **Competitive** Reforms in India over two decades - → Abundant opportunities - **→** Highly competitive # Auto industry Dominated by global players - → Products developed in their global development centers - → High-quality factories set up by global teams - ★ Expats in key positions # Indian Cos' Response – Building competitive advantage **Product and Process Innovation** **Continual Improvement** **Talent Management** # Progress post reforms.... Many sectors have reformed, evolved and achieved global standards - Automotive - Aviation - Telecom - Banking and financial services, Sectors not reformed enough? # Investment in education vs Returns - → 15/18 years spent for education between the Schools and the college - ★ Investment in terms of money, time, and effort - + How much of what we learnt is used in our life or career? # **Academic System in India** Limited reforms and innovation for decades Limited academia-industry partnership Focus shifted to quantity with economic growth Work culture in academic vs corporate just opposite - Expansion was primarily catered to IT/ITES - Even older institutions catered to them easy placements - About 500 getting placed in one IT company, Need 100 core companies **Concepts Used for Research** # **Potential and Competence** - Assess Innate abilities as the basis for selection - Teach or learn the knowledge and skills for the specific jobs Source: (CLC, 2005) ### **Assessment of Innate abilities** - Assessment center A wide-ranging, holistic approach - Assessment of small groups of participants simultaneously - · Evaluated by more than one assessor and agree on the final ratings - · Use multiple tools/methods for evaluation including situational tests - Each exercise provides inputs relevant to one or more dimensions # **Domains of Learning** | THE COGNITIVE | THE AFFECTIVE | THE PSYCHOMOTOR | | | | |---|---|---|--|--|--| | Describes the <u>thought</u> <u>processes</u> that constitute various <u>intellectual</u> <u>abilities.</u> | Describes the <u>attitudes or</u> <u>values</u> that <u>motivate to</u> <u>perform</u> the cognitive or intellectual abilities. | Describes the <u>body</u> <u>movements</u> required to <u>perform the skills</u> . | | | | | RememberUnderstandApplyAnalyze | ★ Receive★ Respond★ Value★ Organize | ImitationManipulationPrecisionArticulation | | | | **♦** Characterize **→** Evaluate **→** Create # Instructional design methodology - ADDIE - Aids the process of 'intentional' learning - A project by a team of designers, subject matter experts, evaluation experts, and production personnel - Learning evaluation in four levels Reaction, Learning, Behavior, Results # **Systems Approach** # Research objectives Establish a holistic framework for comptency management - Select entry level students/ employees by assessing innate abilities suited for specific roles - Co-create outcome-based education with stakeholders for role ready entry level talent - Structured process for role based competency development of employees - Integrating competency framework with the TVS Way and business processes A holistic enterprise-wide Competency Management system # A Higher Education System Collaborative education program with few institutions # A Higher Education System for Life and Career # Systems Approach for Higher Education ### **INPUT** #### Mobilization & Selection - → Innate Abilities/Aptitude - ★ Self driven Aspiration PEOs & POs: based on the skills for the target roles and Washington Accord - → Technical Skills - → Professional Skills ### **Strong Foundation** Foundation tests and courses for Mathematics, Physics, Chemistry and English ### **TRANSFORMATION** - Courses aligned with POs - Electives courses aligned to roles - Course map and relationships - Course outcomes - Deign using IDM &Blooms - Delivery and assessment ### **Outcome-based Education** - **→** Articulating Aspiration - ★ Co-curricular and extra-curricular activities - → Internship every semester - ★ Collaborative industry projects ### **OUTPUT** ### **Technical Output** ★ Academic performance ### **System Output** - ★ Aspirational, highly engaged entry level talent - Employable and Life skills for roles in industry # **Mobilization and Selection** # MOBILIZATION Attract the students with self driven aspiration from Rural, JNV and KV Schools ### SELECTION Assessing Innate abilities: Traits, Motives and Attitudes ### **Two Days Selection Center** Psychometric tests, Individual & Group tasks, Behavioral Event Interview Qualified observers and panelists Selection and identification of best suited roles # **Program Educational objectives - PEO** **Application of technical Expertise:** Actively *apply technical and professional skills* in *engineering practices towards* the *progress of the organization* in competitive and dynamic environment. **Lifelong Learning:** Own their professional and personal development by continuous learning and apply the learning at work to create new knowledge. **Ethical and professional conduct:** Conduct themselves in a *responsible*, *professional* and *ethical manner* supporting *sustainable economic development* which enhances the *quality of life*. # **Program Outcomes - PO** ### | Sharp definition ### | Competencies as outcomes **Professional & Life Skills** #### **Technical Skills** - Apply scientific principles and concepts in design and development of products and manufacturing processes & system - Design products and manufacturing facilities that deliver the requirements of the target customers and desired quality functions - Analyze the systems' behavior and optimize for the results using modeling, simulation and experiments - Check and improve the DFX -assembly, manufacture, cost, quality, reliability, serviceability, recyclability etc. - Sense, Define, and solve engineering problems using appropriate tools and techniques - Demonstrate understanding of the dynamic industrial and business environment in which the products are designed, manufactured and sold #### **Professional & Life Skills** - Demonstrate professional and ethical responsibility. - Develop and maintain positive health physical, mental and social wellbeing - Articulate and engage in pursuit of career and life goals - Plan and work to time. - Communicate effectively through written, oral, and visual means - Work effectively in teams and manage interpersonal relationships - Take ownership for continuous learning - Demonstrate versatility and adaptability in response to change - Overcome challenges with rigor and emotional stability Outcome Based Education: Process ## **Outcome-Based Education: Process** Identify and align the courses with program outcomes Establish course map with relationships. Establish course outcomes aligned to program outcomes. Design the courses with IDM and Blooms taxonomy. Teach/learn and evaluate effectiveness & improve. # **Aligning Courses with Program Outcomes (TS)** | | Program Outcomes Courses | Apply scientificprinciples and concepts in design and development of products and manufacturing processes & system | Design products and manufacturing facilities that deliver the requirements of the target customers and desired quality functions | Analyze the systems' behavior
and optimize for the results
using modeling, simulation and
experiments | Check and improve the DFX -
assembly, manufacture, cost,
juality, reliability, serviceability,
recyclability etc. | Sense, Define, and solve engineering problems using appropriate tools and techniques | Demonstrate understanding of
the dynamic industrial and
business environment in which
the products are designed,
manufactured and sold | |-------------|---|--|--|--|--|--|--| | Course Code | Name of the Course | PO 1 | PO 2 | PO3 | PO 4 | PO 5 | PO 6 | | 140ME0102 | Engineering Mathematics—I | XX | | | | | | | 140ME0103 | Applied Physics | XX | | | | | | | 140ME0104 | Applied Chemistry | XX | | | | | | | 140ME0105 | Introduction to Engineering | XX | Х | Х | | | Х | | 140ME0106 | Engineering Graphics | XX | Х | | | Х | | | 140ME0107 | Engineering Practices Laboratory | х | Х | | х | | | | 140ME0108 | Physics and Chemistry Laboratory | х | | | | | | | 140ME0202 | Engineering Mathematics—II | XX | | | | | | | 140ME0203 | Material Science | х | XX | | | Х | | | 140ME0204 | Engineering Mechanics | XX | Х | Х | Х | Х | | | 140ME0205 | Engineering Metrology and Measurements | XX | | | XX | | | | 140ME0206 | Manufacturing Process - I | XX | XX | | Х | | Х | | 140ME0208 | Computer Aided Drafting and Modeling Laboratory | | Х | Х | Х | Х | | # **Aligning Courses with Program Outcomes (PS)** | | Program Outcomes - | Demonstrate professional and ethical responsibility. | Develop and maintain positive health-
physical, mental and social wellbeing | Articulate and engage in pursuit of
career and lifegoals | Plan and workto time. | Communicate effectivelythrough written, oral, and visual means | Work effectively in teams and manage
interpersonal relationships | Take ownership for continuous learning | Demonstrate versatility and adaptability
in response to change | Overcome challenges with rigor and emotional stability | |-------------|---|--|--|---|-----------------------|--|---|--|---|--| | | Courses | Demonstra | Develop an | Articulate | Pla | Commun | Work effect
interp | Take owners | Demonstrat | Overcome | | Course Code | Name of the Course | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | PO 13 | PO 14 | PO 15 | | 140ME0101 | Communication Skills - I | | | | | XX | | | | | | 140ME0109 | Promotion of Students' Wellness | | XX | | | | | | Х | х | | 140ME0201 | Communication Skills - II | | | | | XX | | | | | | 140ME0209 | Sports For Wellness | | XX | | | | | | х | | | 140ME0309 | Personal Effectiveness | | Х | хх | х | | | | | | | 140ME0409 | Ethical and Moral Responsibility | хх | | | | | Х | | | | | 140ME0509 | Teamness and Inter-Personal Skills (TIPS) | | | | | | XX | | | | | 140ME0609 | Campus to Corporate | | | | х | х | х | х | х | Х | # **Elective Courses Aligned to Roles** | | | B.E in Mechanical Engineeri | ng (Electives aligned to role) | | | | | | | | | | |----------------|---|--------------------------------|---|---|--|--|--|--|--|--|--|--| | Sem | | | nmon Electives | | | | | | | | | | | 5 | Product Design & Engineering | | | | | | | | | | | | | 6 | Automotive Fundamentals & Manufacturing | | | | | | | | | | | | | · · | | Project Management | | | | | | | | | | | | | | Systems Approach for Engineers | | | | | | | | | | | | 7 | <u>Design S</u> | | | ring Stream | | | | | | | | | | , | Automotive Engi | ne & systems | Logistics E | ngineering | | | | | | | | | | | Vehicle Design | Engineering | Manufacturing Sy | stems Engineering | | | | | | | | | | | <u>Powertrain</u> | Chassis (Vehicle) | Assembly & Metal Cutting | Forming & Joining | | | | | | | | | | 8 | Fundamentals of Spark Ignition
Engines | VDE (Statics) | Design of Assembly process, Assembly Engineering, Testing and Performance Assurance | Weld Process Engineering & Design of
Weld Joint and Fixtures | | | | | | | | | | | Internal Combustion Engines Design | VDE (Dynamics) | Metal Cutting Process Engineering | Sheet Metal Forming, Tube Bending & Design of Press Tools | | | | | | | | | | Role | • | • | | - | | | | | | | | | | Entry
Level | CAD Engineer | CAD Engineer | Proving Engineer/Team Leader | Proving Engineer/Team Leader | | | | | | | | | | First
Level | Part Design Engineer | Part Design Engineer | Process Planning engineer/Group Leader | Process Planning engineer/Group Leader | | | | | | | | | - ★ Elective courses are used to develop automotive engineers for specific roles - ★ Courses developed and delivered by experts from India/Overseas - Practicing engineers also attend these courses along with students # **Course Map and Relationships** # **Course Outcomes: Introduction to Engineering** At the end of the course 'Introduction to Engineering', the students will: - Explain the career opportunities in engineering in terms of roles and competencies. - Explain how they can acquire these competencies through an outcomes based education at MCET - Explain how to remain relevant and versatile in a dynamic and complex environments - Observe every product and processes with an engineering perspective and inquisitiveness - Choose to take ownership for his/her learning and development, leveraging the resources and infrastructure. - Identify and rectify unsafe conditions and acts and follow environment friendly practice. # **Course Outcomes: Engineering Mechanics** At the end of the course 'Engineering Mechanics', the student will - ★ Construct free-body diagrams and calculate the unknown forces necessary to ensure static equilibrium condition. - ★ Calculate the magnitude of force acting in each member of frame and machine under static equilibrium condition. - ★ Calculate geometric properties such as centroids and moment of inertia - ★ Analyze the effect of dry friction in contact surfaces (ladder ,wedge, screw and belt) - → Calculate and plot the motion of a particle # **Design Document: Engineering Mechanics** | Course Outcome (CO) Learning Outcome (LO) | | | Speci | ific Outcome (SO) | Content | Bloom's Taxonomy | | Methodology (How the content will be delivered) | | | | | | |--|-----------------|---------------|---|-------------------|---|---|----------------------|--|----------------------|-------------------------------|-------------------------|--|--| | (What the student will be able to be able to do at the end do if he/she has to do the relevant | | | | | t the student should be able to do if
e has to do the relevant LO) | (The content that needs to
be covered if the student | | | Lecture | | | | | | | ' | By t
will: | he end of the course, students | By the | e end of the course, students will: | | Type of
Knowledge | Cognitive
Dimension | Lecture
File Name | (What faculty will do) | (What student will do) | | | | | the motion of a | | velocity and acceleration of | | Explain displacement, velocity and acceleration | displacement, velocity and acceleration | - | Understand | I | Delivers lecture using
PPT | Listens and takes notes | | | | | particle | | particles whose uniform non
uniform motion is described by | 5.1.2 | Explain the constant acceleration equations | constant acceleration | Conceptual | Understand | | | | | | | | | | governing equations, plots. | 5.1.3 | Differentiate uniform and non-
uniform motion | uniform and non-uniform motions | Conceptual | Understand | | | | | | | ľ | | | | 5.1.4 | | s-t, v-t, a-t graphs | Conceptual | Understand | | | | | | | | | | | 5.1.5 | Solve problems involving uniform
and non uniform motion | | Procedural | Apply | | Solves problem | Solves problem | | | | | | 5.2 | Calculate kinematic parameters in curvilinear, projectile, relative | 5.2.1 | Explain curvilinear motion using tangential and normal components | curviliner motion | Conceptual | Understand | I | Delivers lecture using
PPT | Listens and takes notes | | | | | | | | 5.2.2 | Explain projectile motion | projectile motion | Conceptual | Understand | | | | | | | N | | | particles. | 5.2.3 | Explain relative motion | relative motion | Conceptual | Understand | | | | | | | | | | | 5.2.4 | Explain dependent motion | dependent motion | Conceptual | Understand | | | | | | | | | | | 5.2.5 | Solve problems in curvilinear, projectile, relative and dependent | | Procedural | Apply | | Solves problems | Solves problems | | | | | | 5.3 | Use work energy method, | 5.3.1 | Explain D Alembert's principle | DAlembert's principle | Conceptual | Understand | LO 23 | Delivers lecture using | Listens and takes | | | | | | | impulse momentum method | 5.3.2 | Explain work energy method | Work energy method | Conceptual | Understand | | PPT | notes | | | | | | | and DAlembert's principle to | 5.3.3 | Explain impulse momentum method | Impulse momentum | Conceptual | Understand | | | | | | | | | | calculate the forces and their actions on particles | 5.3.4 | Solve problems to calculate the forces and their actions on particles | | Procedural | Apply | | Solves problems | Solves problems | | | # **Assessment of Outcomes and Blooms Taxonomy** | Evaluation
Type | CAT 1 Objective 1 to 3 | | | CAT 2 | CAT 2 Objective 1 to 4 | | | CAT 3 Objective 1 to 5 | | | Semester: Theory Objective e 1 to 5 | | | | |-----------------------|------------------------|-----------|---------------------------|-----------|------------------------|---------------|----------|------------------------|---------------------------|-----------|-------------------------------------|----------|--|--| | Section (marks) | A [SEP](1) | B[sep](3) | C _{SEP} (1
0) | A[sep](1) | B[sep](3) | Csep (1
0) | A.sep(1) | B _{SEP} (3) | C _{SEP} (1
0) | A[sep](1) | B _{SEP} (3) | C[SEP](1 | | | | Duration (mins) | 20 | 90 | 70 | 20 | 90 | 70 | 20 | 90 | 70 | 20 | 90 | 70 | | | | Total no. of question | 10 | 5 | 10 | 10 | 5 | 10 | 10 | 5 | 10 | 10 | 5 | 10 | | | | | No o | f Ques | tions | No o | No of Questions | | | No of Questions | | | No of Questions | | | | | Remember | 2 | 1 | | 2 | 1 | | 1 | 1 | | 1 | 1 | | | | | Understand | 5 | 3 | 2 | 4 | 1 | 1 | 3 | 2 | | 3 | 2 | | | | | Apply | 3 | 1 | 6 | 6 | 2 | 6 | 6 | 2 | 8 | 6 | 2 | 8 | | | | Analyse | | | 2 | | 1 | 1 | | | 2 | | | 2 | | | | Evaluate | | | | | | | | | | | | | | | | Create | | | | | | | | | | | | | | | This is an important stage to align assessment of course outcomes and continual improvement using PDCA # **Industry visits and Internships** ### | Hands-on experience ### Connecting theory to practice | What | Who | How | Logistics | |--|---|---|---| | Engineering drawing and GD& T | Executive
from PED
Dept. | Explain about the Engineering
Drawing practices Explain about the views, GD&T etc Explain about the actual usage of
GD&T in design applications QBD about the learning in class and
do assignment | Classroom with basic
requirement
(Tables, chairs, white boards,
LCD Projector etc) | | TPM -
Domain
Knowledge
on Plumbing
/Electrical | Manager
Workman
training -
HRD | Explain about the importance TPM & its pillars in detail Explain about the JH and its importance Explain about Plumbing /Electrical Qualify all the students Plumbing and Electrical items maintenance. Inform them to maintain the same in Hostel room and Home. | Classroom with basic requirement (Tables, chairs, white boards, LCD Projector etc) Availability of Electrical & Plumbing Equipments. | | SST Visit | Executive
from SST
Hosur | Explain about the CSR Activities Explain about the Types of CSR Activites followed by TVSM Explain about the Importance of SST Talk about the areas where we help society See the SST activities by a visit Share the feedback to others. | Visit to SST for Observation | # **Professional & Life Skills Program** - **+**Credit based Professional skills courses - →Daily practice of Yoga and sports; Wellness index based on WHO definition - →Participation in co-curricular & extra-curricular activities # Snapshots (Morning: 5 am to 6am) # Snapshots ### Swachh Bharat Industrial Visit **Learning Forum** Before After ### Guest Lecture Arts Club Activities # **Industry Sponsored, Collaborative Projects** Market survey Identification of needs, project statement and scope Design Manufacturing Quality assurance and testing | Team | Target | Achieved | | | | |-------------------------------------|---------------------------|---------------------------|--|--|--| | Combustion | 2kmpl | 2.9kmpl | | | | | Friction Reduction | 10% fmep reduction | 14% fmep reduction | | | | | Cooling Performance
Optimization | 1.5kmpl | 1.4kmpl | | | | | Transmission Improvement | 5% Efficiency improvement | 6% Efficiency improvement | | | | | Overall | 5 Kmpl | 4.8 Kmpl | | | | # **Outcome Impact** # **Technical output: Mobilization** # **Technical output: Academic Performance** Mean academic score and Standard Deviation of CEP students is significantly better than peers # **System output: Wellness** #### **Health Score Vs. Academic Score** #### **Three Guna's Score** • Steady improvement of Health index and academic performance # System output: Role readiness | | DIPLOMA IN MECHANICAL ENGINEERING (SANDWICH) - 2009 Batch Final Mark Sheet - Role Readiness | | | | | | | | | | | | | |----------------|---|---|-------------------------------------|---|---|------------------------------------|--------------------|---------------------------|------|----------------------|---------------------------|--|--| | Roll
Number | Names | Project
Deliverable
Achievement
(Max 50) | Adherence to
Process
(Max 25) | Functional
Competency
Score
(Max 25) | Behavioral
Assessment
Score
(Max 25) | Internal
Marks(OJT)
(Max 25) | Total
(Max 150) | Grand Total
(100 Marks | Rank | PASS - first
time | PASS -
after
rework | | | | 09MS05 | XXX1 | 47 | 17 | 19 | 22 | 25 | 130 | 87 | 1 | PASS | | | | | 09MS27 | XXX2 | 43 | 21 | 24 | 21 | 20 | 129 | 86 | 2 | PASS | | | | | 09MS01 | XXX3 | 39 | 22 | 20 | 25 | 23 | 128 | 85 | 3 | PASS | | | | | 09MS24 | XXX4 | 44 | 22 | 19 | 21 | 21 | 126 | 84 | 4 | PASS | | | | | 09MS12 | XXX5 | 39 | 22 | 20 | 23 | 22 | 126 | 84 | 5 | PASS | | | | | 09MS30 | XXX6 | 38 | 21 | 18 | 24 | 23 | 123 | 82 | 6 | PASS | | | | | 09MS23 | XXX7 | 37 | 23 | 19 | 23 | 21 | 123 | 82 | 7 | PASS | | | | | 09MS20 | XXX8 | 39 | 21 | 18 | 23 | 22 | 122 | 82 | 8 | PASS | | | | | 09MS25 | XXX9 | 38 | 22 | 18 | 22 | 21 | 122 | 81 | 9 | PASS | | | | | 09MS02 | XXX10 | 37 | 20 | 18 | 23 | 24 | 121 | 81 | 10 | PASS | | | | | 09MS03 | XXX11 | 41 | 17 | 18 | 21 | 21 | 118 | 78 | 11 | PASS | | | | Formal Qualification of students for specific roles with rigorous assessment ## **Performance in the Role** - Proportion of top two performance rating almost twice that of peers - 63 patents filed by Diploma engineers # Systems output: Social skills – Flood relief for Cuddalore - 60 CEP engineers have contributed Rs 5 Lacs - 30 of them made three visits to Cuddalore - Provided relief to victims affected by flood # Systems output: Social skills – Social skills - Tree plantation in villages around Hosur - 70+ Native tree species of India - Planted in lakes bunds to avoid erosion # Summary Systems Approach to Education Academic performance Wellness Engagement Life skills Role readiness Job Performance It has to be co-created along with stakeholders to make it powerful and meaningful # Change.... Thank you