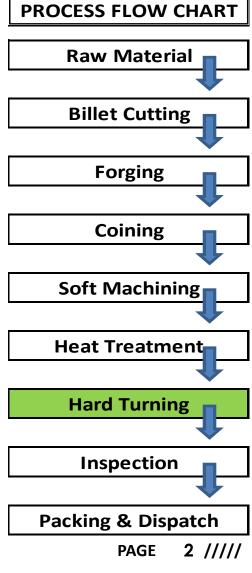
December 2018

AUTOMATED PROCESS ADJUSTMENT TO IMPROVE PROCESS CAPABILITY

Applying Adjustment Calculator Using Predictive Statistics



Objective

- •To improve Process Stability at Hard Turning Process.
- Incorporating Auto Inspection and Auto Tool Wear Offset (Adjustment) to eliminate Manual Intervention in the Process.

OFFSET CALCULATOR FOR CNC TURNING

Methodology

 Part Selection carried out by prioritizing the Critical Parameters being manufactured in Hard Turning Process and as Monthly Sales Volume.

Microsoft Excel Worksheet

CRITICAL PARAMETERS LIST								
Sr. No	Part No.	Parameter	LSL	USL				
		COUNTER BORE 1	33.402	33.426				
		BOSS LENGTH	61.740	61.940				
1	LI08A1	COUNTER BORE 2	33.476	33.500				
	RIGHT	BOSS DIA	43.930	43.950				
		BORE DIA	34.920	34.960				
2	TI02A1	BOSS DIA	55.000	55.025				
3	TI02A1	BOSS DIA	55.000	55.025				
4	TF07B1	BORE DIA	25.536	25.540				
5	TF06A1	BOSS DIA	69.604	69.612				
6	SP01A1	BOSS DIA	37.959	37.975				
7	PT02B1	BORE DIA	22.215	22.242				
8	MS02B1	BORE DIA	15.003	15.024				
9	PT02B1	BORE DIA	22.215	22.247				
10	PT02B1	BORE DIA	22.215					
11	MS08A1	BOSS DIA						
12	MM16B1	BORE DIA						
	1							

BOSC DI

OFFSET CALCULATOR FOR CNC TURNING

PAGE 3 ////

Background – Current Process Situation

- The Hard Machining is carried out on CNC Turning Machine with Auto Loading & Unloading of Parts through Robot Gantry System.
- 100% Parts are verified for the Parameter.
- Manually Tool Wear Offset (Adjustment) is carried out in CNC Turning Machine.

OFFSET CALCULATOR FOR CNC TURNING

Adjustment Process

- The Tool Wear Offset is provided in CNC Machine for the compensation of the Insert Wear
- Tool Wear Offset are provided for maintaining the Parts at the Mean Value.
- Operator is taking the Tool Offset (Adjustment) based on his skill / best of his knowledge and no statistical tools are applied to know the Adjustment amount.

OFFSET CALCULATOR FOR CNC TURNING

Manual Intervention

Machine Operator is operating CNC Turning Machine with 2 Spindles (Machining 2 Different or Same Parts running).

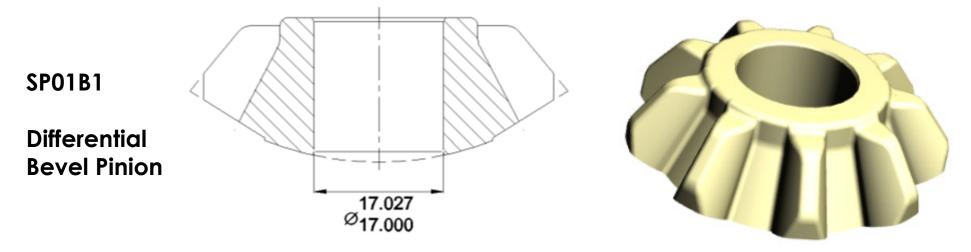
- Process requires the Machine Operator to be present on the Machine at all times:
 - To Inspect the Part
 - To Provide Tool Wear Offset based on Needs.
 - To record the Observed Values in Periodic Inspection Reports and Pre Control Charts.
- For a normal process Machine Operator has to take 14 to 18 Offset per Machine Spindle.

Target

- Auto Inspection to be initiated with facility of Auto Adjustment (Tool Offset). Proposed Benefits:
 - Elimination of Manual Inspection & Adjustment.
 - Reduction of Manpower one Machine Operator can operate up to 3 Machines (with 2 Spindle each).
 - Auto Recording of the Observations (Inspection Values).
 - Continuous Run Charts to observe Trends.

Trial Plan

- Selecting Parts for conducting Trials.
- Capturing the Tool Wear through Statistics.
- Generating Tool Wear offset Calculator
- Trials with Calculator.
- Establishing the Auto Adjustment Mechanism.
- Monitoring the Auto Adjustment and taking Improvement Actions.

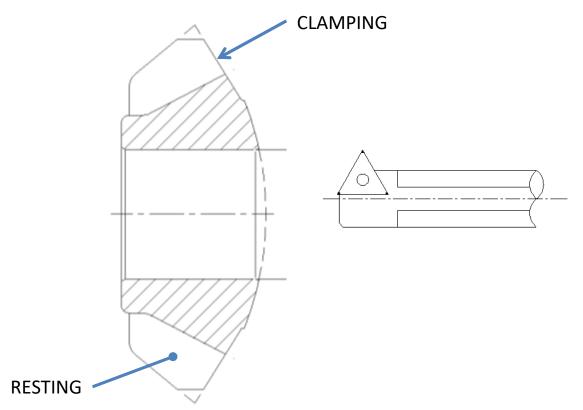

Part Selection

- Parameters
- Specification
- Machine

Bore Diameter

17H8 (17.000 ~17.027 mm)

M 71 (Muratec Machine 2 Spindle)

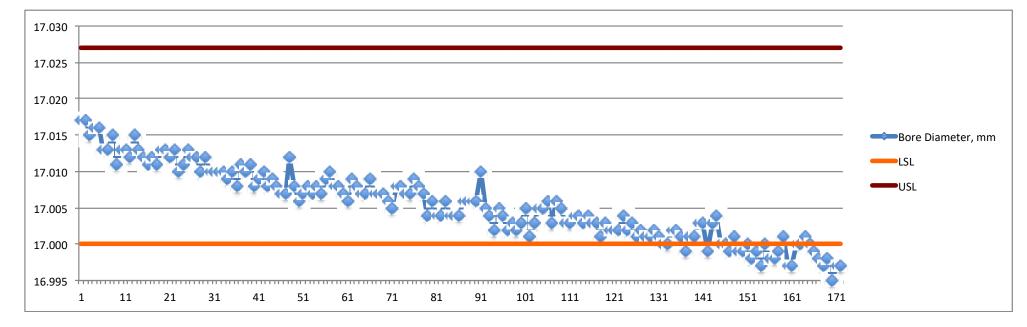

Note: Measurement done by an air-gauge, across the length of the bore, and the minimum of the measured value taken while making sure that the ovality and taper are below 3 μ , each.

OFFSET CALCULATOR FOR CNC TURNING

PAGE 9 /////

Hard Turning Process

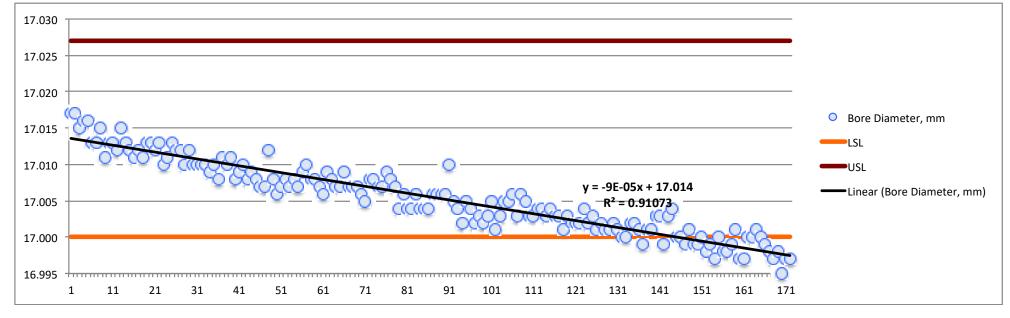
OFFSET CALCULATOR FOR CNC TURNING


PAGE 10 /////

First Step

- In order to understand the behavior of the process, an experiment was conducted in which parts were manufactured...
 - Without giving an offset.
 - Till sufficient number of Rejections (Defects) were produced.

Experimental Data

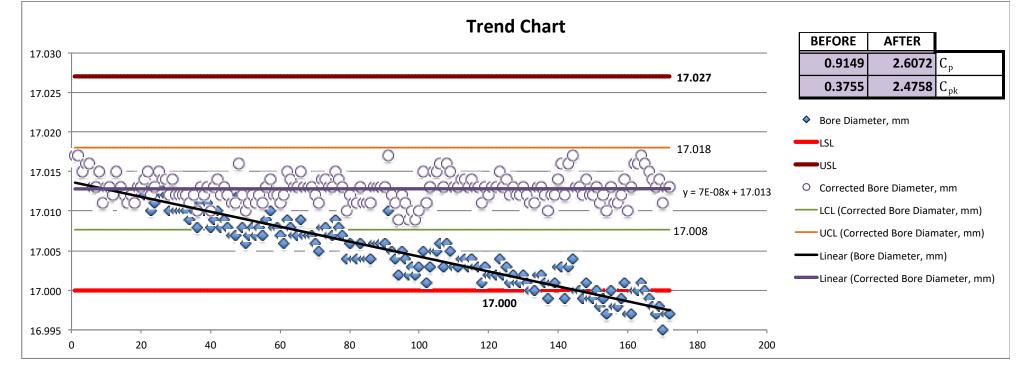

OBSERVATIONS of Parts manufactured at Hard Machining without taking Tool Wear Offset

OFFSET CALCULATOR FOR CNC TURNING

PAGE 12 ////

Understanding the Data

Best Fit Line for the Observations.


Fitted Line: $y = \alpha + \beta^* x$

OFFSET CALCULATOR FOR CNC TURNING

PAGE 13 ////

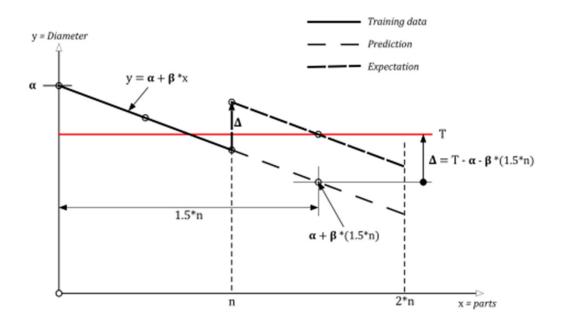
Simulation

Simulation : Correction Factor (Offset) taken at every part based on the Gain (β) and the Bias (α).

OFFSET CALCULATOR FOR CNC TURNING

PAGE 14 ////

Conclusion of the Simulation


- If the offset is taken based on the α and β of the fitted line from the previous data, Process Capability can be improved significantly.
- Based on the trend of the tool wear, it was decided that the offset will be taken after every 20 parts based on the process performance of the previous 20 parts.

PAGE 15 ////

Scheme of the Calculator

OFFSET CALCULATOR developed based on Linear Regression to • calculate the Offset Values after every 20th Part.

Formulas:

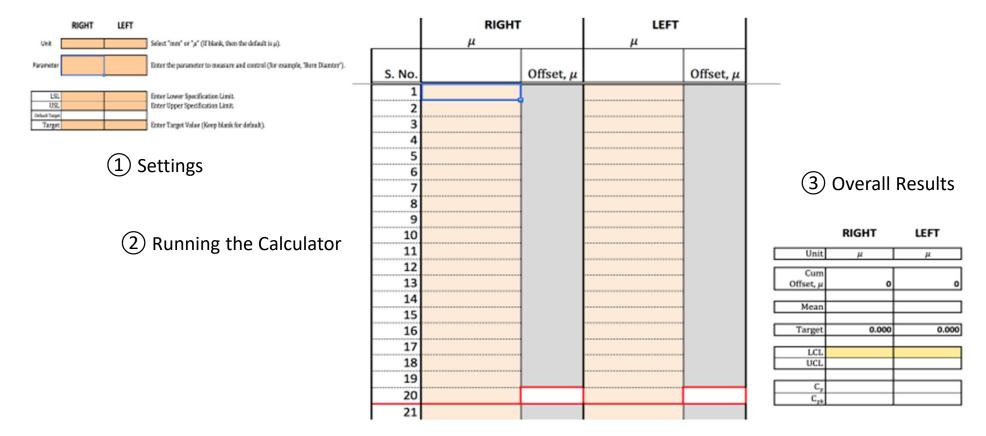
 $\mu_{\rm x}$

ß

α

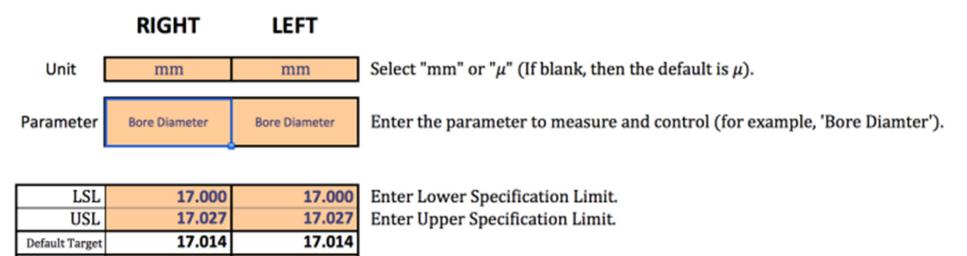
 $=\Sigma x_i/n$ $=\Sigma i/n$ =(n+1)/2 $=\Sigma yi/n$ μy $s(xx) = \Sigma (x_i \cdot \mu_x)^2$ $=\Sigma x_i^2 - (\Sigma x_i)^2/n$ $=\Sigma i^2 - (\Sigma i)^2/n$ $= [n^{*}(n+1)^{*}(2^{*}n+1)/6] - [n^{*}(n+1)/2]^{2}/n$ $= n^{*}(n-1)^{*}(n+1)/12$ $s(xy) = \Sigma(x_i - \mu_x)^*(y_i - \mu_y)$ $= \Sigma x_i^* y_i \cdot (\Sigma x_i)^* (\Sigma y_i)/n$ $=\Sigma i^* y_i \cdot (\Sigma i)^* (\Sigma y_i)/n$ $=\Sigma i^* y_i \cdot (n+1)^* (\Sigma y_i)/2$ = s(xy)/s(xx) $= \mu_{\gamma} - \beta^* \mu_{x}$

Fitted Line: $y = \alpha + \beta^* x$.


Let Target, T = (USL+LSL)/2Since our aim is $\mu_r = T$. Offset (in microns), $\Delta = 1000^{*}[T \cdot \alpha \cdot \beta^{*}(1.5^{*}n)]$; rounded off.

OFFSET CALCULATOR FOR CNC TURNING

PAGE 16 /////



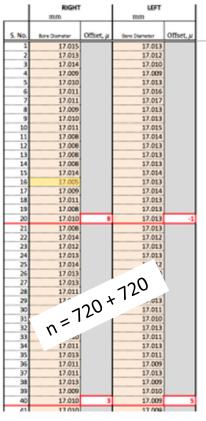
OFFSET CALCULATOR FOR CNC TURNING

PAGE 17 ////

An Example – Settings

Enter Target Value (Keep blank for default).

Calculator 1_1.mp4

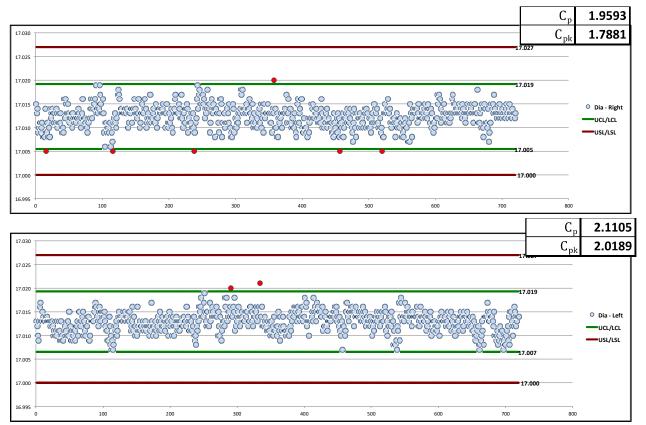

SONA BLW

Target

OFFSET CALCULATOR FOR CNC TURNING

PAGE 18 /////

Offset Calculator and the Results of an Experiment


	RIGHT	LEFT
Unit	mm	mm
Cum Offset, μ	62	48
Mean	17.012	17.013
Target	17.014	17.014
LCL UCL	17.0054 17.0192	17.0065 17.0193
	17.0192	17.0195
Cp	1.9593	2.1105
C _{pk}	1.7881	2.0189

OFFSET CALCULATOR FOR CNC TURNING

PAGE 19 /////

Stability of the Process

- The method of Offset Calculator has resulted in a significant increase in process capability.
 - However, unstable points are noticed on the control charts.
 - Can we improve it further?

Microsoft Excel Worksheet

OFFSET CALCULATOR FOR CNC TURNING

PAGE 20 /////

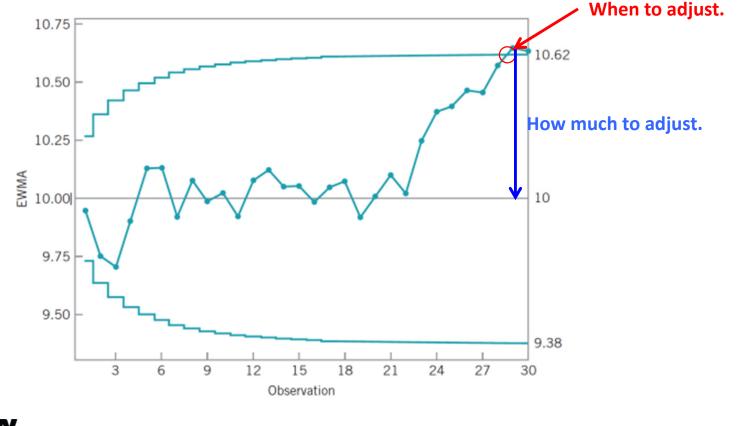
Concerns with the Linear Regression Based Offset Calculator

- Offset is calculated at a fixed interval (say, after every 20 parts).
 - Does not consider tool wear pattern (fast or slow).
- No action is taken for the first 20 parts.
 - Danger of scrapping up to 20 parts in case the original set-up was flawed.
- Assumes normality of the data.
 - Assumption is wrong if the actual data is not normally distributed.

OFFSET CALCULATOR FOR CNC TURNING

PAGE 21 /////

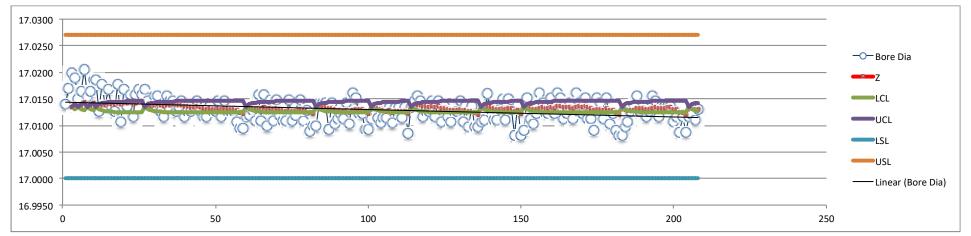
Alternative: The Exponentially Weighted Moving Average (EWMA) Method


- Can quickly detect a small shift in the process mean.
- Robust to non-normality of the data.
- Provides a forecast where the process mean will move.
 - Control limits used to decide <u>when</u> to make an adjustment.
 - The difference between the target and the forecast of the mean used to determine <u>how much</u> adjustment is necessary.

OFFSET CALCULATOR FOR CNC TURNING

PAGE 22 /////

Application of the EWMA Control Chart



OFFSET CALCULATOR FOR CNC TURNING

PAGE 23 /////

Simulation of Applying EWMA Method

sigma	0.0023747
Ср	1.89496251
Cpk	1.81157221

Min	17.008	17.000	LSL
mu	17.013	17.014	Target
Max	17.020	17.027	USL

OFFSET CALCULATOR FOR CNC TURNING

PAGE 24 ////

Scheme of the Calculator

The EWMA OFFSET CALCULATOR

Exponentially Weighted Moving Average Control Chart

$$z_{i} = \lambda x_{i} + (1 - \lambda) z_{i-1}$$
$$0 < \lambda \le 1$$
$$z_{0} = \mu_{0} = Process Target$$

If the observations x_i are independent random variables with variance σ^2 , then the variance of z_i is:

$$\sigma_{z_i}^2 = \sigma^2 \left(\frac{\lambda}{2-\lambda}\right) \left[1 - (1-\lambda)^{2i}\right]$$

And the EWMA Control Chart:

$$UCL = \mu_0 + L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$

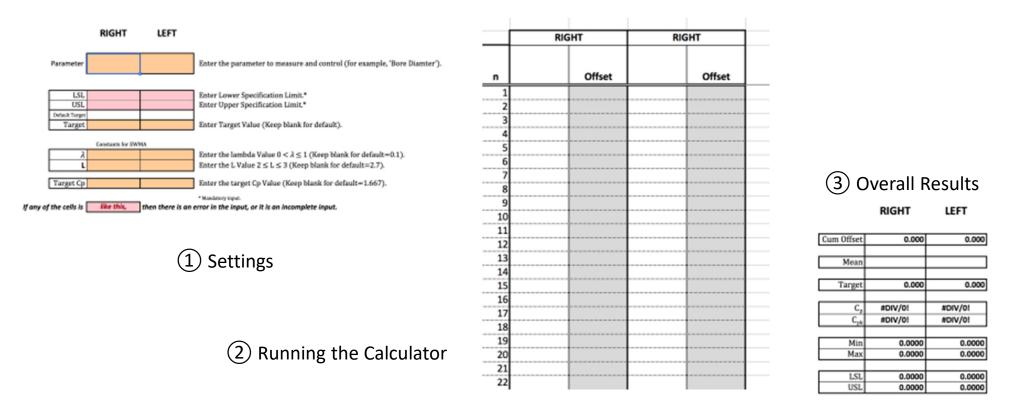
Center line =
$$\mu_0$$

$$LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} [1 - (1-\lambda)^{2i}]}$$

The OFFSET CALCULATOR:

$z_0 = \mu_0 = Process Target$	(1)
$z_i = \lambda x_i + (1 - \lambda) z_{i-1}$	(2)
If $z_i > UCL$, or $z_i < LCL$, then:	
$Offset = z_0 - z_i$	(3)
Set $i = 0$, and continue with (1).	

Note:


 $0 < \lambda \le 1 = 0.1$, Default. L = 2.7, Default. $\sigma = (USL - LSL)/(6^*C_p')$ where C_p' is target Process Capability = 1.667, Default.

OFFSET CALCULATOR FOR CNC TURNING

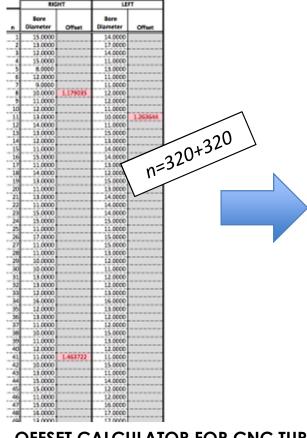
PAGE 25 /////

The EWMA Calculator

OFFSET CALCULATOR FOR CNC TURNING

PAGE 26 /////

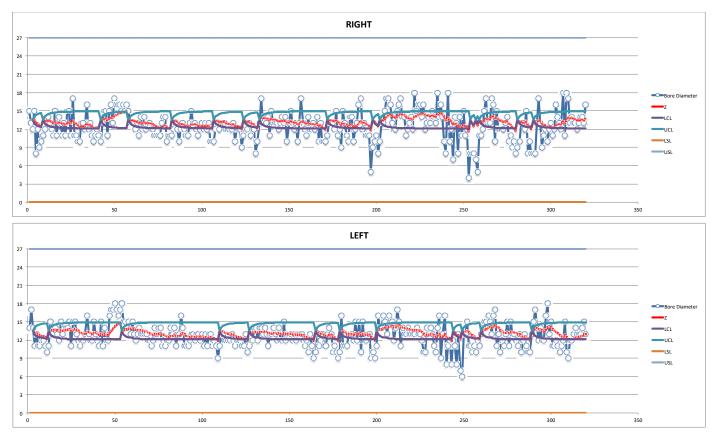
An Example – Settings


	Parameter	Bore Diameter Bore Diameter		Enter the parameter to measure and control (for example, 'Bore Diamter').				
	LSL USL Default Target	0.000 27.000 13.500	0.000 27.000 13.500	Enter Lower Specification Limit.* Enter Upper Specification Limit.* Enter Terret Value (Keen blank for default)				
	Target	13.500	13.500	Enter Target Value (Keep blank for default).				
		Constants for EWN	1A					
	λ			Enter the lambda Value $0 < \lambda \leq 1$ (Keep blank for default=0.1).				
	L			Enter the L Value $2 \le L \le 3$ (Keep blank for default=2.7).				
	Target Cp	2.000	2.000	Enter the target Cp Value (Keep blank for default=1.667).				
If any of	* Mandatory input. If any of the cells is like this, then there is an error in the input, or it is an incomplete input.							

OFFSET CALCULATOR FOR CNC TURNING

PAGE 27 ////

EWMA Offset Calculator and the Results of an Experiment


	RIGHT	LEFT	
Cum Offset	18.474	13.540	
Mean	12.481	12.684	
Target	13.500	13.500	
C _p	1.9324	2.3526	
C _{pk}	1.7866	2.2105	ノ
Min Max	4.0000	6.0000 18.0000	
LSL	0.0000	0.0000	
USL	27.0000	27.0000	

OFFSET CALCULATOR FOR CNC TURNING

PAGE 28 /////

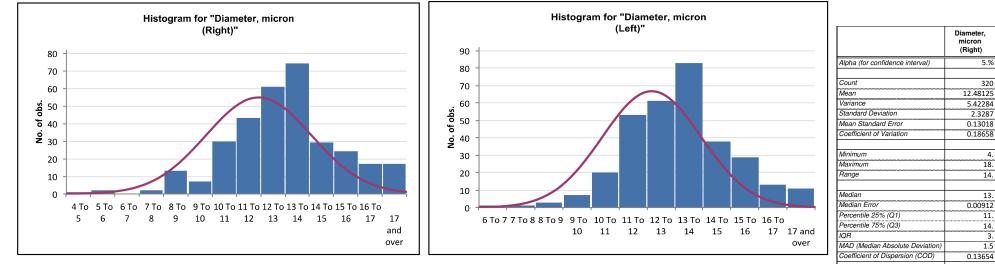
How the Calculator Worked

OFFSET CALCULATOR FOR CNC TURNING

PAGE 29 /////

S.No.	Machine	ine Date Part No Parameter	Descentes	LSL	USL	<u></u>	Offset Fr	equency	Cummulat	ive Offset	q	p	Ç	pk	Duration	Remarks	
S.NO.	No	Date	Part No	Parameter	LDL		Qty	Right	Left	Right	Left	Right	Left	Right	Left	Duration	Remarks
1	M 7 1	20-06-2018	SP01B1	Bore Dia	0.000	27.000	240	0	8	0.00	-5.51	2.49	1.77	2.4106	1.7320	1.5 hrs	Ewma v0
2	M71	22-06-2018	SP01B1	Bore Dia	0.000	27.000	120	3	2	4.35	-2.49	3. 12	2.42	2.8019	2.2207	1hrs	Ewma v0_
3	M 71	23-06-2018	SP01B1	Bore Dia	0.000	27.000	640	15	11	18.47	13.54	1.93	2.35	1.7866	2.2105	Shrs	Ewma vO_
4	M 84	24-07-2018	LIOBA1	Boss Dia	43.925	43.945	120	17	20	-14.44	-15.06	1.11	1.45	0.6898	0.8034	2hrs	Ewma v0_
5	M 84	31-07-2018	LI08A1	Boss Dia	43.925	43.945	120	16	16	-12.83	-12.79	1.17	1.39	0.739	0.8902	2.5 hrs	Ewrna vO_
6	M 84	01-08-2018	LIO8A1	Boss Dia	43.925	43.945	120	11	4	-9.06	-4.07	េទ	1.50	1.2375	1.2864	2.5 hrs	Ewma v0_
7	M 84	09-08-2018	LI08A1	Boss Dia	43.925	43.945	300	45	28	-35.18	-22.69	1.58	1.57	0.9836	1.2193	4hrs	Ewma v0
8	M 84	11-08-2018	LI08A1	Bore Dia	34.920	34,960	154	10	10	-17.54	-17.54	3.05	2.82	2.4607	2.2698	3.5 hrs	Ewma v0_
9	M 84	11-08-2018	LI08A1	Bore Dia	34.930	34.960	150	0	1	0.00	1.64	2.80	2.55	2. 7 382	2.4651	3 hrs	Ewma vO_
10	M 84	15-08-2018	LI08A1	Counter Bore Dia 1	33.402	33.4 26	350	33	-	31.47	-	2.04	-	1.7544	-	7.5 hrs	Ewma vO_
11	M 84	17-08-2018	LI08A1	Counter Bore Dia 1	33.402	33. 426	400	10	-	13.46	-	2.66	-	2.4907	-	8hrs	Ewma vO_
12	M 84	18-08-2018	LI08A1	Counter Bore Dia 2	33.476	33.500	350	80	-	-8.00	-	2.30	-	2.2423	-	7.5 hrs	Ewma v0_
13	M 58	27-08-2018	L105B2	Bore Dia	18.1 6 0	18.200	200	14	-	-27.51	-	2.23	-	1.9495	-	2.5 hrs	Ewma v0_
14	M61	29-08-2018	PT02B1	Bore Dia	22.215	22.242	200	41	-	-47.42	-	1.69	-	1. 1930	-	3hrs	Ewma v0_
15	M 62	04-09-2018	PT02B1	Bore Dia	22.215	22.242	180	3	-	4.80	-	2.46	-	1.4318	-	2.5 hrs	Ewmav1_
16	M 84	05-09-2018	LIO8A1	Boss Dia	43.925	43.945	110	8	4	-7.98	-4.12	L 71	100				
17	M 84	07-09-2018	LI08A1	Boss Dia	43.925	43.945	300	27	22	-26.77							
18	M 84	10-09-2018	LI08A1	Boss Dia	43.928	43.945	100	14	"								

Trials with EWMA


Microsoft Excel Worksheet

SONA BLW

OFFSET CALCULATOR FOR CNC TURNING

PAGE 30 /////

Normality of the Resulting Diameter Values

Normality Tests

	Varia	able #1 (Diamete	er, micron (Right))	Variable #1 (Diameter, micron (Left))				
	Test Statistics	p-level	Conclusion: (5%)	Test Statistics	p-level	Conclusion: (5%)		
Kolmogorov-Smirnov/Lilliefor Test	0.	1.	No evidence against normality	0.	1.	No evidence against normality		
D'Agostino Skewness	1.22324	0.22124	Accept Normality	0.72246	0.47001	Accept Normality		
D'Agostino Omnibus	5.96484	0.05067	Accept Normality	3.60351	0.16501	Accept Normality		

SONA BLV	V
MORE TORQUE PER GRA	M

OFFSET CALCULATOR FOR CNC TURNING

PAGE 31 ////

-0.16489

0.13587

3.66094

0.26921

-0.16566

0.69037

Skewness

Kurtosis

Skewness Standard Error

Kurtosis Standard Error

Skewness (Fisher's)

Kurtosis (Fisher's)

Diameter,

micron

(Left)

5.%

320

12.68438

3.65869

1.91277

0.10693

0.1508

6.

18.

12.

13.

11.

14.

3.

2.

0.00749

0.11178

0.09699

0.13587

3.51042

0.26921

0.09744

0.53748

Advantages of the EWMA Method

- Gives controlled results; provides high process capability.
- Resulting data is nearly normally distributed.
- The calculated offset is:
 - Not drastic, so does not tamper with the process.
 - Need-based, so is appropriate and at the right time.
- The Calculator is in action immediately after three parts are made.
- Continuously learns the process behavior and acts.

OFFSET CALCULATOR FOR CNC TURNING

The SMART (SONA Machine Adjustment Reckoning Tool) Device – An Image

PAGE 33 /////

SONA BLW

OFFSET CALCULATOR FOR CNC TURNING

Next Steps

• The **SMART** Device to be monitored and developed horizontally on other CNC Machines.

OFFSET CALCULATOR FOR CNC TURNING

PAGE 34 ////

THANK YOU

OFFSET CALCULATOR FOR CNC TURNING

PAGE 35 /////